A Fast Algorithm for Subgraph Search Problem

Karam Gouda Mosab Hassaan
Faculty of Computers & Informatics Faculty of Computers & Informatics
Benha University, Benha, Egypt Benha University, Benha, Egypt
karam.gouda@fci.bu.edu.eg mosab.hassaan@fci.bu.edu.eg
Abstract

Graphs are widely used to model complicated data se-
mantics in many applications. In this paper we pro-
poseFast - ON, an efficient algorithm for subgraph iso-
morphism problem which has proven to be NP-complete.
Fast - ONis based on Uliman algorithm [8]. It improves

the search space of Ullman algorithm by considering two G q
effective optimizations. Comparing to the well-known algo _ _
rithms Ullman and Vflib [3],Fast - ON achieves up to 1-3 Figure 1. Running Example

orders of magnitude speed-up.

the edge label. Grap& should be returned as the result,
1. Introduction since graphG contains query;.
Unfortunately, the subgraph search problem is hard in

As a popular data structure, graphs have been used tqna; it requires subgraph isomorphism checking of query
model many complex data objects and their relationships inq against each data grapf, which has proven to be NP-
Fhe_ real world, such as the chemical compounds [9], emit_iescomplete problem [4]. Indexing [10, 2, 11] is proposed to
in images [7], and social networks [1]. For example, in yjjeviate the overhead of pairwise isomorphism checks. In
social network, a person corresponds to a vertex; i this approach, Indexes are used to quickly filter out data
the graph(7, and another personicorresponds to a vertex graphs that are not possible in the result and produce can-
v; in the graphG. If personsi andj are acquaintances or gigate graphs. Then the candidate graphs are verified, i.e.
they have a business relation, then an eigev;) exists, \yhether the query graph is a subgraph of each candidate,
which connects vertey; andv;. Also in chemistry, a set of by a subgraph isomorphism algorithm. The efficiency of
atoms_ combined with designated bonds are used to describg,ig approach depends on the filtering power of each index-
chemical molecules. Due to the wide usage of graphs,ing methodology and how fast it produces candidate graphs.
it is quite important to retrieve data graphs containing a gyen with this approach, efficient subgraph checking algo-
query graph from graph database efficiently. For example, yithm is very important since it is required to verify the ean
given a large chemical compound database, a chemist mayjigates. Note that there are many scenarios in which all data
want to find all chemical compounds having a particular graphs, or most of them, contain the query, and using any

substructure. This type of search is well-known as subgraphgjjtering process would return all these graphs as candidate
search. Formally, given a graph databdand a query g pe finally verified.

graphg, we need to find all data graplys € D, whereg;

contains the query, namely,q is subgraph isomorphic to

gi. Related Work. Ullman [8] and Vflib [3] are two well-
known algorithms for subgraph isomorphism problem. Ull-

Figure 1 shows a running example of subgraph isomor- man algorithm is developed based on the branch and bound

phism problem, where a query gragland a data graptv paradigm [6]. It is prohibitively expensive for querying

are listed. The letter beside the vertex is its id and therett against a very large data graph. The Vflib algorithm is an-

inside the vertex is its label, and the letter through edge isother important algorithm for subgraph isomorphism prob-

lem. It uses an optimized serial version of Ullman algo- Definition 2.3 (Graph Isomorphism)

rithm. The algorithm proceeds by creating and modifying a Given two graphsG = <Vg, Fg, Lg,lg> and H =

match state. The match state contains a matched-set, whickcVy, Ey, Ly, lg>. A graph isomorphism frontf to G

is a set of vertex pairs that match between the query graphis a bijection f : Vg ~— Vs such that: (1) for any

¢ and data grapld=. If the matched-set contains all of the edge(u,v) € Epg, there is an edgéf(u), f(v)) € Egq,

query graphy, then the algorithm is successful and returns. (2) ig(u) = lg(f(uw)) andlg(v) = lg(f(v)), and (3)

Otherwise, the algorithm attempts to add a new pair. It doesiy ((u,v)) = la((f(u), f(v))).

this by tracking th‘? in-s_et and_out-set .Of each graph, which The concept osubgraph isomorphismcan be defined

are the sets of vertices immediately adjacent to the matched : N L
analogously by using aimjectioninstead of aijection A

set. These two sets define the potential vertices that can be

. . raphH is called a subgraph of another graphor G is a
added to a given state. The only pairs that can be addecP .
are either in the in-set of both graphs or the out-set of both supergraph off), denoted asf C G (or G 2 H), if there

graphs. The algorithm uses backtracking search to find ei-exIStS a subgraph isomorphism frafto G.

ther a successful match state, or return a failure. .
3. Uliman Algorithm

Our Contributions. In this paper, we propose an efficient
subgraph isomorphism testing algorithm. It is based on
Uliman algorithm and reduces the search space as much‘;
as possible by following a novel ordering strategy of the
query’'s vertices, and by utilizing the label information
of vertex’s neighborhood. The new algorithm is called
Fast - ON (which stands for the bold letters inFast
subgraph testing byOrdering the query’s vertices and
utilizing labeledNeighborhood information). Comparing
to the well-known algorithms Ullman [8] and Vflib [3],
Fast - ONachieves up to 1-3 orders of magnitude speed-up.

One of the earliest and highly-cited approaches to the
ubgraph isomorphism problem is the algorithm proposed
y Ullman. Given a query graph and a data grapl.

To check ifq is subgraph ofZ, Ullman’s basic approach

is to enumerate all possible mappings of verticesVjn

to those inVg using a depth-first tree-search algorithm.
Figure 2 shows a part of the search tree generated from
testing the two graphs in Figure 1. At leviedf the search
tree, a vertex; in V; is mapped to some vertex Ity (the
number; inside each node in the search tree means that this
node represents the vertex € V). The root node of the
search tree represents the starting point of the searadr, inn

Organization. This paper is organized as follows. Sec- nodes of the search tree correspond to partial MappInas
tion 2 defines the preliminary concepts. Section 3 presents P P ppINgs,

Ullman algorithm in details. Section 4 presents our pro- and nodes at level/,| represent complete — not necessarily

posed algorithnfFast - ON. Section 5 reports the experi- sub—ispmorphic R mapping_s. I thgre exists a complete
mental results. Finally, Section 6 conclude the paper. mapping that preserves adjacency in botand G, then

we haveg is subgraph isomorphic t&, otherwiseg is not
i subgraph isomorphic t&'. The bold path in Figure 2u(
2. Preliminary Concepts is mapped ta, uo is mapped tas, andus is mapped to

) vy), IS @ complete mapping that preserves adjacenay in
As a general data structure, labeled graph is used togndc, thusq is subgraphs isomorphic (.

model complex structured and schema-less data. In labeled

graph, vertices and edges represent entity and relatipnshi ynfortunately, the number of complete mappings is ex-
respectively. The attributes associated with entitiesrand ponential in the number of nodes of the involved graphs.
lationships are called labels. This paper focuses on simpleThjs means that the running time may be huge even for rea-
undirected graphs with vertex and edge labels. Below, thesonaply small graphs. In order to cope with subgraph iso-

terminology used throughout the paper is introduced. morphism problem efficiently, Ullman proposed a refine-
Definition 2.1 (Labeled Graph) ment procedure to prune the search space. Itis based on the
A labeled graph G is defined as a 4-tuples following three conditions:

<Vg,Eq,La,la>, where Vi is the set of vertices, 1. Label and degree condition. A vertexu € V, can
Eg is the set of edged,¢ is the set of labels, ang; is a be mapped t@ € Vi under injective mappind, i.e
labeling function that maps each vertex or edge to a label v = f(u),Iif

in L¢. (i) Ig(u) =lg(v), and

Definition 2.2 (Vertex Neighborhood) (i) deg(u) < deg(v).

Given a graphG, the neighborhood of, € V is the set 2. One-to-One mapping of vertices condition. Once
Ng(u) = {v € Vi | (u,v) € Eg}. The degree of a vertex vertexu € V, is mapped tw € Vg, we cannot map

v € Vg is defined adeg(v) = | Ng(v)|. any other vertex ifV;, to the vertexo € V.

Level Vq

1 u, (D 2 @ @06
2 T — o) ©) @ &) OREJORO |

3 ug-»(3) (4 (5 @) @ 5 @) ©) (5 (2 ©) (@ o

4 X® 660 00 ® ® 602 60 @ O O B 6 B2 ®2 6

5 X® 00 00 3@ 6 ®0 @ @ ® G @@ @ G BB B ©@

Figure 2. A part of search tree of Ullman algorithm

3. Neighbor condition. By this condition Ullman algo- Algorithm: Order_Vertices(V,)
rithm examines the feasibility of mapping € V; to

v € Vg _by considering the preservation of. stru_ctural Input: V, = {uy,ua, ..., upy, };
connectivity. If there exist edges connectingwith Output: An order ofV, V; = {uf,ub, ..., ufy, };
previously explored vertices gfbut there are no coun- 1. V=4 ¢
. - - . - q - L
terpart edges idr, the mapping test simply fails. 2. foreachu e V, do calculatedeg(u);
3. u| = uy, k=argmaxcy,deg(u);
/! ! .
4 Fast - O\IAIgorithm 4, Add.u1 to V, and removey;, from V;;
5. fori=2...1V]
6. up = up, k= argmaxey, [{(uv,u') € B, :u' € V]}|;
In this section we proposéast - ON, a new algorithm /- Add u;/to V, and removey; from V;
for subgraph isomorphism problerfast - ONis based on 8. retumn V3

Uliman algorithm. The search space considered by Uliman
algorithm is still huge even after using the refinement pro-
cedure. Fast - ON explores much smaller space than that
of Ullman algorithm by using the following two new opti-
mizations.

Figure 3. Ordering Query Vertices Algorithm

4.2 Opt2: Utilizing Neighborhood Labels

4.1 Optl: Ordering the query vertices Here, we introduce a novel condition effective in reduc-
ing the search space. Itis based on the neighborhood labels
of matching vertices. This new condition is much stronger
than the label and degree condition of the refinement pro-
cedure. First, we define the labeled neighborhood of any
vertex as follows.

Ouir first optimization is based on the observation that the
search order in Ullman algorithm is random. It depends on
the order of query vertices imposed during input. This de-
fault ordering ofl/;, can possibly result in a search order that
seriously slows down Ullman Algorithm. Query vertices pefinition 4.1 (Vertex Labeled Neighborhood)
should be explored in the order that facilitates gettinghe Gjven a graphG' and a vertex: € Vg, the labeled neigh-

most benefit of applying the third condition. Our approach porhood ofu is given asN L (u) = {(I(v), la((u, v))) :
to orderV/, is to require the currently processing query ver- ,, ¢ v, and (u,v) € Eg}.

tex to have high connectivity with the previously explored

ones, that is, suppose that € V, is the currently process- The following theorem presents the necessary condition
ing vertex, then; should have the higher connectivity with required to map a vertex € V, to a vertexv € V.
uy, Us, - - -, u;—1 among the remaining ones. Whereas,

Theorem 4.1 Given two graphg andG such thay is sub-
graph isomorphid under injective function f. I € V, is
mapped taw € Vg, thenNLg(u) C NLg(v)

is the one with maximum degree. This new ordering forces
false mapping to be discarded as early as possible during th
search, thus saving much of the time that Ullman algorithm
may take on false long partial mappings. Figure 3 outlines Thus, according to Theorem 4.1, if the labeled neighbor-
this idea. hood of vertexv € V; does not contain the labeled neigh-

borhood of vertex: € V,, u can not be mapped ta We

can reduce the search space by enforcing this inclusion test
Next condition generalizes the first condition of the refine- |nput: ¢: a query graph and: a data graph.
ment procedure by adding the new inclusion test. Output: Boolean:q is a subgraph of:.

BooleanTest =FALSE; /* Global Variable */

Algorithm: Fast — ON(q,G)

1. Label and neighborhood inclusion condition.A ver-

L 1 = Order_Vertices(Vy); /* Optl */

teXu.E Va can be mapped to € Vi under injective 2. ConstructDLNg, DLN, andMp

function f, i.ev = f(u), if)

: z 3. Construct bothP, and Pg;

(i) Ig(u) =lg(v), and ; ,

(i) NLy(u) C NLe(v) 4. for eachu € V do

nr = ' 5. C(u)={v:veVgl(u) =lg(v), and
Note that if NL,(u) € NLg(v) is satisfied, it directly _ Mp,(u)P(v) = 1} [+ Opt2*/
leads tadeg(u) < deg(v) sincedeg(v) = |NLg(v)]. 6. Recursive_Search(uy);
7. return Test;
Example 4.1 Consider the two graphsq and G Procedure Recursive_Search(u;)
given in Figure 1. According to the label and 1. if NOT Testthen
neighborhood inclusion condition, we can map 2. for v € C(u;) andv is unmatchedio /* Cond. 2 */
vertex u; € V, to v; € Vg since (i) ly(uy) = 3. if NOT M atchable(u;,v) then continue
lg(v1) = A, and (i) NL,(v1) = {(B,Y),(B,Y)} C 4. f(u;) = v; v = matched;
{(A,X),(B,Y),(B,Y)}:NLG(vl). 5. if 7 < |V,| then
])) 6. Recursive_Search(u;y1);
Though the Label and neighborhood inclusion condition 7 else

is effective in reducing the search space, applying theiincl g Test =TRUE:
sion test is expensive especially for large size graphs withg return :
higher average vertex degree. Below, we propose a newjg f(u;) = NULL; v = unmatched; /* Backtrack */

method to efficiently apply the inclusion test. The method Fynction Matchable(
is based the observation that many vertices in the query orq
data graph share the same neighborhood. The next example
highlights this fact. 3.

Ujy V) /* Cond. 3 */
for each(u;,u;) € E4, j <ido
if (v, f(u;)) ¢ E¢ then return FALSE;

return TRUE;

Example 4.2 Consider the query graphg and data
graph G given in Figure 1. We have (1) In graph

G: NLg(v1) = NLg(v2) = {(4,X),(B,Y),(B,Y)}, Figure 4. Fast - ON Algorithm

NLG(U3) = NLG(U5> = {(A7Y)7 (B7 Z)}! andNLG(U4)

= {(4,Y),(4,Y),(B, 2),(B, Z)}; (2) In query graphg:

NLy(uy) = {(B,Y),(B.Y)}, and NLg(uz) = NLq(us) Now we can say that, for eaehe V, andv € Vg, we

haveNL,(u) € NLg(v) iff mp,(u)pew) = 1. Thus, the

test (ii) in label and neighborhood inclusion condition can
Based on the above observation, we can reduce the cospe replaced by testing ifip, (,)p(v) = 1.

of the containment checks by cashing most of the repeated

computation, as in the following steps:

={(4,Y), (B, 2)}.

In subgraph search problem, cashing the repeated com-
putation as above is very useful since real graph datasets
1. Find the set of distinct labeled neighborhoods for the tend to share commonality, that is, a vertex may appear

two graphsg and G, denoted a9D LNg and DLN,,
respectively.

. Construct a bit matrid/prn = (m;;)as Wherea =
|DLN,| and$ = |[DLN¢|, to maintain the inclusion
relationship between distinct neighborhoodsyaind
G, that is,m;; = 1if DLN,[i] C DLNg][j], other-
wisem;; = 0.

. Foragraply —gisq or G —construct an array of point-
ers P, of size|V,|, called position array, where each
slotw holds the index of the vertexlabeled neighbor-
hood atDLN,.

in many data graphs. This happens because the real data
come from the same application domain. Note that in the
experimental section, subgraph search is used for testing
Fast - ONalgorithm.

4.3 Fast-ON Algorithm

Figure 4 outlined~ast - ON algorithm. Line 1 applies
the first optimization Optl, whereas lines 2-5 outline the
second optimization Opt2. In line 5, for each query vertex
u € V,, data graph vertices € V; that satisfy the modified
first condition are collected into a set called candidate set

AIDS 10K with Intel 3GHz dual Core CPU and 4G memory running
10000 . | o ‘ ‘ Linux. In experiments, we consider vertex-labeled and
Ullmann —x— edge-labeled simple graphs.

Fast-O 8-
Fast-N -
1000 ; Fast-ON —m=

5.1 Datasets

100 ¢ . .
Experimental evaluation are performed on a group of

T (S . = real and synthetic datasets as follows.

Total Response Time (Sec)

Real Datasets. The first real dataset, referred to as
Q4 08 Qlz 016 020 Q2 AIDS_10k, consists of 10,000 graphs that are randomly
drawn from the AIDS Antiviral screen databake These
Figure 5. Effects of optimizations graphs have 25 vertices and 27 edges on average. There
are totally 62 distinct vertex labels in the dataset but the
Chem_Scalability Total Time (Q8) majority. 01_‘ these labels are C, O and N. The total num-
10000 ‘ ‘ ber of distinct edge labels is 3. In order to study the scal-
o — g ability of Fast - ON against different dataset size, we use
1000 + Fast-ON --m- a large real chemical compound dataset as a second real
dataset, denoted as Chetil. Chem1M is a subset of the
PubChem database and consists of one million graphs.
Chemi1M has 23.98 vertices and 25.76 edges on average.
The number of distinct vertex and distinct edge labels are
81 and 3 respectively. For this study, we derive subsets from
o Chem1M, each of which consists a¥ graphs and called
o1 T ‘ ‘ ChemN dataset.
1 10 100 1000

100 +

Total Response Time (Sec)

Synthetic Datasets. The synthetic graph dataset is gener-
ated as follows: first, a set ¢f seed fragments (seed of a
small subgraphs) is generated randomly, whose size is de-
termined by a Poisson distribution with mean The size

of each graph is a Poisson random variable with mEan
C(u). The procedureRecursive_Search matchesu; over Seed fragments are then randomly selected and inserted into
C(u;) (line 5) and proceeds step-by-step by recursively a graph one by one until the graph reaches its size. More
matching the subsequent vertex,; over C(u; 1) (lines details about the synthetic data generator are available in
6-7), or sets Test to true value and returns if every vertex of [5]. A typical dataset may have the following setting: it

g has counterpart id: (line 9). If u; exhausts all vertices has 10,000 graphs and uses 100 seed fragménts 100)

in C(u;) and still cannot find matching, Recursi®earch with distinct vertex labelsl.y, = 3 and distinct edge labels,
backtracks to the previous state for further exploratiore(l Lg = 2. On average, each graph has 50 edgés=(50)

11). The procedure Matchable applies the third condition. and each seed fragment has 15 eddes (5). This dataset

is denoted by SyriOK.

Figure 7. Scalability on dataset size #
Graphs in K)

Note that according to Opt2, for eaeh C(u) is as

small as possible. Consequenfiigist - ON explores much Query Sets. There are six query sets Q4, Q8, Q12, Q16,

smaller space than Ullman algorithm. Moreover, according Q20 and Q24. Each s€)i consists of 1000 query graphs

to thl, false mappings are.discarded as early as pqssiblewith i edges. For AIDSLOk, we adopt the query set

saving much of the computation spent by Ullman algorithm. ¢rom 10]. In order to generate query sets for other datasets
a set of 1000 graphs whose size larger than or equal to 24

5. EXPERIMENTAL EVALUATION are randomly selected from the dataset. Then, edges are
removed from graphs such that the remaining graphs still

In this section, we evaluate the performance of conrlected. These graphs constit@ewhen all graphs are

Fast - ON on real and synthetic graphg&ast - ONis im- of sizei.

plemented in standard C++ with STL library support and 1ptp://dtp.nci.govi.

compiled with GNU GCC. Experiments were run on a PC 2ftp://ftp.ncbi.nlm.nih.gov/pubchem/.

Total Response Time (Sec)

Total Response Time (Sec)

Table 1. Fast - ON performance against Ullman and Vflib, and # of distinct neigh

AIDS_10K Chem_10K
10000 — : : 1000
Ullmann —%—
F tV(f)“rS S g B a
ast- o [= B = = e
1000 | < o
,,,,,,, £ 100 £ Ullmann —x—
= Vilib e
100 ¢ 3 Fast-ON &
2
2 1) X T
10 | =
= - = = S E e S
1 - : : : : : 1= : : : : :
Q4 Q8 QI2 Q16 Q20 Q24 Q4 Q8 Q12 Q16 Q20 Q24
(a) (b)
Chem_200K Syn_10K
10000 P — - S p oo T - 5 5 e — B
UIIm\?frI}B 7%"5 77777 Q’t U”m\%‘ig ————EI% 77777
1000 | Fast-ON = 2 ool Fast-ON --m-
E %
*””M §_ — B .
100 f mo g m - . m % 10 ¢ | = N]
°
10 L— : ‘ ‘ ‘ ‘ 11— : ‘ ‘ ‘ ‘
Q4 Q8 QI2 Q16 Q20 Q24 Q4 Q8 Q12 Q16 Q20 Q24
() (d)
Figure 6. Total Response Time on Various Datasets
| Datasets | Fast - ONfaster than Ullman | Fast - ONfaster than Vflib | [DLNp| |
| AIDS_10K | by 1-3 orders of magnitude [by 1 order of magnitude | 796 |
[Chem_10K | by 4 factors | by 1-2 orders of magnitudd 352 |
| Chem_200K | by 3-4 factors | by 1-2 orders of magnitudd 1173 |
[Syn10K | by 2-5 factors | by 1-2 order of magnitude| 287 |

borhoods.

5.2. Performance Study

Here, we compare the performance resultsadt - ON
algorithm with those obtained on the same dataset by Ull-
man® and Vflib4.

5.2.1 Effects of Optimizations

In this experiment we show the effect of each optimization
independently, and the effect of both of them combined, on
the performance dfast - ON. For this purpose, we imple-
mented three versions &fast - O\, namely,Fast - Othat
uses only the first optimization OptEast - N that uses
only the second optimization Opt2, aRdst - ONthat uses
both of the two optimizations.

Figure 5 plots the results obtained by running the three
versions and Ullman algorithm on AIDSOK for the differ-
ent query sets. The figure shows tRaist - Nis faster than
Fast - O except for Q12 and Q16, wheFast - O shows
the best performance. In addition to its influence on speed,
the first optimization makes the algorithm less sensitive to
guery size.Fast - ON shows the best performance, it out-
performs bothFast - OandFast - N. This result confirm
the fact that the two optimizations are neither independent
nor conflicting, but they are complementary to each other.
Finally, the figure shows how our new optimizations scale
Ullman algorithm. Fast - ON outperforms Ullman algo-
rithm by 1-3 orders of magnitude.

5.2.2 Fast - ONvs. Ullman and Vflib

Figure 6 reports the total response time obtained by
running Ullman, Vflib, and Fast-ON on various
datasets (AIDSLOK: Figure 6(a), ChenlOK: Figure 6(b),
Chem200K: Figure 6(c), and SyfOK: Figure 6(d)). Ta-
ble 1 reports how muclkrast - ON is faster than Ullman
and Vflib. The Table also reports the size of distinct la-
beled neighborhood of each datag>|DLNp|. Notice
that| DL Np| is small for all datasets compared to the num-
ber of graphsD|. Thus, the containment cost of the labeled
neighborhoods iFast - ON is minimal. We can see that
Fast - ON always spends less time compared with Ullman
and Vflib. This happens becauBast - ON has better opti-
mizations.

5.2.3 Scalability

Figure 7 shows the scalability of Ullman, Vflib and
Fast - ON with respect to the number of graphs using the
dataset ChemiM and@8. The figure shows that the three
algorithms scale linearly. Howevdtast - ON outperforms

3Ullman Algorithm is also implemented in standard C++ with STL li
brary support and compiled with GNU GCC.
“http://amalfi.dis.unina.it/graph/db/vflib-2.0/.

Ullman by factor three, and Vflib by more than one order of
magnitude. Moreover, Vflib is not shown for 1000K graphs,
since it failed to run on large datasets.

6. Conclusion

In this paper, we presentdeast - O, an efficient al-
gorithm for testing subgraph isomorphism problem which
has proven to be NP-complete probldeast - ONis based
on Ullman algorithm and reduces the search space as much
as possible by ordering the vertices of query graph and by
using the labeled neighborhood information. Experimen-
tal results on real and synthetic datasets demonstrate that
Fast - ON outperforms Ullman and Vflib by 1-3 order of
magnitude. Alsd-ast - ON has excellent scale-up proper-
ties with respect to the number of graphs.

References

[1] D.Cai, Z. Shao, X. He, X. Yan, and J. Han. Community min-
ing from multi-relational networksProc. of PKDDQ 2005.

[2] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards

verification-free query processing on graph databaS#s-

MOD, pages 857-872, 2007.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.

A (sub)graph isomorphism algorithm for matching large

graphs.|EEE transaction on pattern analysis and machine

intelligence 26(10):1367-1372, 2004.

M. R. Garey and D. S. Johnson. Computers and intractabil-

ity; guide to the theory of NP-completene®¥. H. Freeman

& Co., 1990.

[5] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. Proc. of ICDM pages 313-320, 2001.

[6] A. H. Land and A. G. Doig. An automatic method of

solving discrete programming problemsEconometrica

28(3):497520.

E. G. M. Petrakis and C. Faloutsos. Similarity searching in

medical image databasedEEE transactions on knowledge

and data enginnering(3), 1997.

[8] J. R. Ullmann. An algorithm for subgraph isomorphism.
ACM, 23(1):31-42, 1976.

[9] P.Willett. Chemical similarity searching. Chem. Inf. Com-
puter Science38(6), 1998.

[10] X. Yan, S. Yu, and J. Han. Graph indexing: a frequent

structure-based approacBlGMOD, pages 335346, 2004.
[11] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta
<= graph.VLDB, pages 938-949, 2007.

(3]

(4]

(7]

